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ABSTRACT

Let G denote the set of decreasing G: R — R with G =1 on ] — 00,0},
and f0°° G(t)dt < 1. Let X be a compact metric space, and T: X = X a
continuous map. Let y denote a T-invariant ergodic probability measure
on X, and assume (X, T, i) to be aperiodic. Let U C X be such that
w(U) > 0. Let ry(x) = inf{k > 1: T*z € U}, and define

Gu(t) = ——nl{z €U : u(U)ru(z) > t}), t €R
wU)

We prove that for p-a.e. z € X, there exists a sequence (Un)p>) of
neighbourhoods of z such that {z} = nn Un, and for any G € G, there
exists a subsequence (ng) k>1 with

GU"I: — G weakly.
We also construct a uniquely ergodic Toeplitz flow (O(z*°), S, u), the
orbit closure of a Toeplitz sequence £°°, such that the above conclusion
still holds, with moreover the requirement that each Uy be a cylinder set.
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1. Introduction

1.1. PRELIMINARIES AND NOTATIONS. Throughout, X shall denote a compact
metric space, T: X — X a continuous map, and g shall be a Borel T-invariant
ergodic probability measure on X.

Given U C X with u(U) > 0, Poincaré’s recurrence theorem asserts the
following random variable to be p-a.s. well defined:

(z) =inf{k>1:T*2 c U}, z€X
Next, Kac’s return time theorem [K] reads

B(u(U)ry) = tuUn{r, =t}) =1,
t>1

where the expectation is computed with respect to the induced probability mea-
sure on U, py := p/pw(U).

A remark is that (X, T, n) is ergodic if and only if Kac’s estimation for the
expectation is valid for any subset having positive measure.

It is natural to try to understand finer statistical properties of the variable
w(U)ty on the space (U, B(X) N U, uy), for instance the distribution function
Fuwyr () = po({z : pU)ry < t}).

Another approach, rather rapidly developing in the last decade, is to describe
asymptotics for entrance times: let x € X and let (Up)n>1 denote a decreasing
sequence of neighbourhoods for z, with (), U, = {z}. The question then is
whether (Fu(Un)run)nzl converges weakly or not, and in the case it does, to
describe the limit.

The limit has been shown to exist y-a.s. for suitably chosen (Uy)n>1 and to
be the distribution function of the positive exponential law with parameter 1,
in many classes of mixing systems [AG], [BSTV], [C], [CC], [CG], [H1,2], [HSV],
[P], [S], [Y]. Non-exponential asymptotics have been obtained in [CF] and [DM].

This short note is devoted to the two following goals:

— describe possible Fy s;

— describe possible asymptotics (a question raised in most papers listed above).

Essentially, the second relies on the sufficient achievement of the first. Let us
therefore start by describing Fyrs. For convenience, we shall put

Gy=1-Fy.
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Clearly, Gy is

(i) decreasing,
ii) right continuous,

(i
(iii) simple,

(iv) has discontinuities at {t;p(U) < -+ < tpu(U) < ---},
(

v) Gy =1lon]—00,0],

where {t; < to < ---} = {ry(2): z € U}. Since u(U)ry is a positive random
variable, we can compute its expectation by

(vi) 1 = E(u(U)ry) = / Gt

which is yet another translation of Kac’s theorem.

1.2. ResuLts. We first partially enough describe Gyss.

We call (X,T) minimal if any T-invariant closed subset F' C X is trivial.
Within the class of minimal systems, recurrence to open subsets U occurs with
bounded gaps, that is the set {t; < 3 < ---} is finite.

PROPOSITION 1: Properties (i)-{(vi) from the preliminaries, with the requirement
that the set of discontinuity points {t;a < taa < ---} be finite, are characteristic
for Gys arising from minimal systems (X, T).

Let us now introduce a class G, which will later serve as the set of weak limits
of GUS:

o0
G ={G:R - R, decreasing, =1 on ] — oo, 0], with / G(t)dt < 1}.
0

THEOREM 1: For any ergodic aperiodic (X, T, i), and p-a.e. x € X, there exists
a sequence (Up)n>1 of neighbourhoods of x, with (), U, = {«}, such that for
any G € G, along some subsequence {ny),

GUnk — G weakly,

whence all possible asymptotics exist in any aperiodic ergodic system.

The key tool in proving Theorem 1, which is, as K. Petersen pointed out to
the author, a Van Strassen type theorem for asymptotics, is to understand how
Gys having rational parameters can be constructed within periodic systems.

This result is of course in contrast with exponential asymptotics as quoted
before, but this is due to the fact that the U,s in Theorem 1 are extremely
weired.
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It therefore seemed interesting to us to obtain the same result, but within a
system where the U,s may be chosen to be “real” cylinder sets. This is possible
indeed, and before stating our last result we will introduce a few more notions.

Unique ergodicity of the flow (X, T') means that there is only one T-invariant
probability measure y; it implies ergodicity.

Strict ergodicity means both minimality and unique ergodicity.

Let A denote a finite set, an alphabet.

A pattern U = (ug, ...,un—1) over A is a finite string over A.

Its length is |U| = n.

Given two patterns UU and V, their concatenation is the obvious pattern,
denoted UV, of length |U| + |V].

Let 2 € Q*F: = AN or Q: = AZ be a one or two sided sequence over .A.

On Q7 or ©, define S(z,) = (Tn41), the shift transformation.

The orbit closure of z, O(z), is the closure of the orbit, O(z) := {S"xz}.

It is shift invariant, (O(z), S) is a topological flow, the flow generated by x.

A Toeplitz flow is the flow generated by a Toeplitz sequence.

A Toeplitz sequence [JK]|, [O] is an element x € © which is non-periodic,
but satisfies:

Vo, Ip(n) > 0: Vk, T, = Tpypp(n)-

A Toeplitz flow is always minimal.

THEOREM 2: There exists a uniquely ergodic Toeplitz sequence ™ € {0,1}2
such that if (X, T, ) denotes the generated shift dynamical system, and if (Vi)
denotes the sequence of cylinders intersecting x*°, for any G € G, there exists a
subsequence (Uy,) of (Vi), intersecting x°, with the property that

limGy, = G, weakly.
n

ACKNOWLEDGEMENT: The author thanks A. Fan, B. Saussol and D. Schnei-
der for kindly listening to preliminary constructions and helping to clarify the
arguments.

2. Proof of Proposition 1

e—>: This is already done in the Preliminaries sub-section where conditions
(i)-(vi) are shown to hold for any Gy .

By minimality the set of recurrence times {t; < t3 < ---} must be finite.
e<—: Let us be given a G having finitely many discontinuities located at
{tic < - -+ < tg410a} for some positive a.
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We let Bj = G(thl_) — G(tja+), ji=1,...,k+1.
We will produce a strictly ergodic y € {0,1}N such that, if 0 = kg < ky < ---
denotes the set of indices n with y,, = 1, then
limpy %#{l k; < N} =,
(1) Vi, kiy1 — ki € {t;},
limpy %#{Z k; < N and ki+1 —k; = t]'} =a,8j, i= 1,...,k+1.
If this can be achieved, then we will put

X={S"y:n>0}, T=S5 U=1,

where 1 denotes both the symbol 1 or the cylinder set 1 = {z € X: 29 = 1}. It is
then an exercise to check that G = Gy.

CONSTRUCTION OF y.  We put I; = [3°,_; Bs, 2o Bsl (recall 37 B; =1).

Let T=R /,=[0,1] and select @ irrational, such that 6 and the }_.__ f;’s are
rationally independent.

Define Rz = z+68mod1, z € T.

The partition (I;) of T is generating for the minimal uniquely ergodic rotation
RonT.

Apply repeatedly R to produce a sequence (j,) € {1,...,k + 1}V, defined by

i<s

jn=j <= R"(0) € I;.

Then construct y by defining the sequence (kg =0 < ky < ---) first:

kn=2t]’s, nZO

s<n

Finally y is obtained by putting “1”s at positions k, and “0”s elsewhere. |

3. Proof of Theorem 1

3.1. RATIONAL GS AND RED/GREEN LADDERS. We say a G as in Proposition
1 is rational if its parameters, i.e., a, 8;, and t;, are rational.

By Proposition 1, and its proof, such G is a Gy.

However, in the case of rationality of parameters, we shall show how to produce
Gy such that G = Gy for some pattern U, and some uniquely ergodic periodic
system X = {S"z: 0 < n < P} (with period P).

Set, for rational G, a = p/q and B; = p;/q.

As in Proposition 1, we can assume that ¢; > 3.
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Let N = M¢?, and set n; = Mpp;.

Consider a perfectly periodic Rohlin tower of height N, label its levels num-
bered from 0 to N — 1, and assume at the beginning that they all have a green
color. ’

Change to red the color of the levels with numbers

0,t1,2t,..., (n1 - 1)t1, nity, nity +to,. .., Nyt +naly, ..., antj + (nk — 1)tg.
i<k

Then let U denote the union of the red levels. It has density, within the tower,
equal to « by construction, and red levels are separated by runs of consecutive
greens having lengths ¢; — 1, hence U returns to itself with times t,...,%.

Moreover, the density of reds returning to reds by time ¢; is precisely af;
within the tower, for each j, whence G = Gy.

We will keep in mind the idea that a rational G with finitely many disconti-
nuities can be figured by this red/green ladder, a periodic Rohlin tower, with U
equal to the union of the red levels, bottom marked red.

We observe that the set of weak limits of such Gs are the elements of G.

3.2. APERIODICITY AND KAC TOWNS.

LEMMA 1: The system (X, T, u) is non-periodic (if and) only if for p-a.e. x € X,
for any m > 1, there exists ¢ > 0 such that if B(z,e) denotes the open ball
centered at x and having radius €, then

B(.’t,&‘) - {TB(z,s) > m}

Proof: Assume that for some m > 1, if
Ap ={x:Ve >0, B(z,e) N {7B(z,c) < m}},

p#(Am) > 0. Then pick a subsequence ¢4 | 0 together with some n < m, such
that for each ¢, there exists y, with d(z,y,) < ¢4 (“d” is some distance defining
the X-topology), and d(x, T"y,) < &4. Then get

0 < d(z,T"x) < limsupd(z,T"y,) + limsupd(T"y,, T"z) = 0,
q q
because y, — x and T" is continuous, whence A, C {zr:3n < m, = = T"x}.
Hence if p(A,,) > 0 for some m, (X, T, u) has a periodic component.

The “if” part is left to the reader. 1
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The standard way to prove Kac’s theorem within an ergodic system is to take
some U with p(U) > 0, to consider that u({ry < +oo}) = 1 by ergodicity, and
to cut basin U into sets

Un{rv =k}, k>1

Then above each UN{7y = k} having positive measure starts a skyscraper having
k floors exactly (bottom one included), along which the action of T goes up until
it reaches the top floor where it returns to U some way.

Hence the whole space X is (mod 0) the union of those skyscrapers with basins
of the form U N {ry = k} that cover U. This picture is a Kac town.

Our Lemma 1 states that in an aperiodic ergodic system, a.s., Kac towns based
on e-balls at the point, having arbitrarily large minimal heights, exist.

3.3. LIGHTING FLOORS ON OR OFF: PrOOF OF THEOREM 1. Take a ratio-
nal G having finitely many discontinuities, as in Proposition 1, and construct a
red/green ladder or sheave realizing it.

Choose some ¢ > 0 arbitrary. Consider a Kac town based on some small
neighbourhood of x € X having positive measure, and let m > 1 be its minimal
height ({ryy > m} on U).

Within each skyscraper in the town, start piling up red/green ladders starting
from the bottom floor, assuming a ladder step has a floor height. Don’t stop
piling unless the ladder piled exceeds the skyscrapers top floor.

Then according to whether a ladder’s step is red or green, either turn the floor
light on, or leave it turned off.

Set W equal to the union of the lightened floors in Kac’s city.

Then W has measure

|u(W) — | < p{union of floors abave ladders),

which can be made less than ¢ provided m is chosen large enough.
Second, {t1,...,tx} C Tw (W), and

p{fz e W :rw(x) & {t1,.. ., tx}})

can be made smaller than ¢ provided m is chosen large enough.

Taking a sequence &, | 0, this procedure shows that any weak limit of a
sequence of rational G's as in Proposition 1 can be attained as a weak limit of
Gws as constructed above.

Finally, collect rational Gs in a sequence (G,.)n>0. Let G, = Gir, , be the
Gw associated to G, and <4, and collect together within a sequence (Un)n>o the
union of the sequences (W, o) and (B(x.¢4)). Then (N, U, = {z}. ]
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4. Proof of Theorem 2

4.1. RATIONAL (GS: HOLES INSTEAD OF RED/GREEN LADDERS AND PERIODIC
SEQUENCES. Recall a G as in Proposition 1 is rational if its parameters, i.e.,
o, 3;, and t;, are rational. Such G is a Gy, by Proposition 1.

However, in the case of rationality of parameters, we shall show how to produce
Gy such that G = Gy for some pattern U, and some uniquely ergodic periodic
system X = {S"z: 0 <n < P}.

Set, for rational G, o = p/q and 3; = p;/q.

As in Proposition 1, we can assume that t; > 3.

Let N = Mq?, and set n; = Mpp;.

Assume throughout that V denotes a symbol not in A.

Select U = ab?, with a # b in A.

Then put
Ji=abi3va, 1<j<k+1,
and set
J=Jy-ene JL...J]. ...... Jjoo Tggreeeee Jeg1 = It :f{l
A ~~ ~ P N, e/
ni times n; times Nk41 times

(notice that |J| = N, |J;| = t;).

Finally set z = -+ J .- J--- JJ .- = J%®, with [0, |J|[= J (z € (AU {V})?).

Then the least period of z is |J|, because since ¢; < -+ < tg41, J can occur in
z only at positions [n|J|, (n+ 1)|J|[ for some n > 0.

The desired frequencies are issued by construction, i.e., G = Gy where U =
{z € {S™2: n > 0}: 2[0,|U|[= U} (once again, we do not distinguish the pattern
and the cylinder it defines on the orbit closure).

4.2. INpUCTION. The set of rational Gs satisfying conditions of Proposition 1
is countable.
We can collect them all along a sequence, (G("))nzo-
eFirst step: Let 2(% be as in sub-section 4.1 for G, with notation maintained
except that we add some superscript “©)”,
eSecond step: GM) comes with parameters o'} = p(1) /g(1), ﬂ](l) = pﬁ-l)/q(l),
b <<t
The idea is to construct z(!) = (J(1) realizing GV, with J(1) a concatenation
of J©s, among which some have had their holes filled in.

We can assume, reducing o) if necessary, and multiplying the tg.l)s conse-
quently, that tg-l) = sgl)N(O), for each j, and s > 3.
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Let us put NV = MO (g2, and ng.l) = M(l)p(l)pg-l).

Each J;O) has a single hole (letter V).

For ¢ € A, and B a pattern over alphabet AU {V}, let ‘B be the pattern
deduced from B by filling in all the holes with a “c”.

Set J() —a JO)(b7(0))%" =3 70)a JO), then set

e)
JO = (Jfl))"gl) "'(JI£(11)>+1)nk(l)+1’

which has length N,

Then using the fact that s(ll) < e < sgel(z) 1 and the procedure followed to fill
in some holes, together with the fact that J(®) was the minimal periodic pattern
of 29, we deduce that £ = (J(1))* has minimal period N = |J()|,

Next set U(D) =a J(0b 70 7(0)

Then GV = Gya) on (O(z(V), S).

Notice that G©) remains equal to Gy on (O(zV), S).

This is because ab? has received no new possible occurrence in the process of
filling holes that deduces (! from z(®.
eInduction: Let n > 1 (similar to the passage from step “0” to “17).

We have for superscripts ¢ = 0,...,n constructed periodic sequences z(®),
with 28 = (J®)° | JO| = NO 2 with minimal period N, we have for
1 < ¢ < n constructed U® =2 JObOb 7O 4513 UO = gbb, such that on

(O™, S), Gy realizes G®. Then GtV comes along with parameters

1
QD) = plntD) fglnt D) gt — it D) jg(nt) 4{m+D) < 4D | and we
already assume that t§"+1) = s§~"+1>N (") with S§n+1) > 3.
Then set N+ = M4+ (g(r+10)2 (04D = gt D pntDp(n+D) apq gintD

(n+1) L

=e Jm)(bgm)s" " =3 j(n)a j(n) | j(nt1) = (Jf"“)) (Jlg?ﬂll))ﬂ)":(‘r)fn)ﬂ_
Finally set U("+1) =e j(n)b j(n)b j(n) - p(n+1) = (J(n+1)yoo,

By construction, since s{"*" < ... < Tt 410 We have 2(**1) with least
period N+1) = | j(r+1)| - And the process deducing £(®*1) from z(™ did not add
any new occurrence of U(® ... U™ whence (O(z("+1), ) realizes G*+1) =

Gyn+n); it does so simultaneously for GO, ... G™),

n"Y

4.3. ConcLUSION. The sequence (x("))nzo converges pointwise to some (> €
{a,b,Vv}2.

Since N = |J(™)| - oo, it follows by construction that in fact z{>) has no
more holes, i.e., £(® € {a, b}~

The periodic pattern J( of (™) has say h,, holes. Then the one of z(®*1) has
Rog1 = hn(Z;c::”“ ?3§n+1)) = Ryt M (Y. p§n+1)). Else the period of
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2+l jg N(r+1) — Zj |J;n+1)!n;n+1) — M("H)p(nH)N(")(Zj p§n+l)s§n+l)).
We deduce that the density of holes in z(*+1) is

+1
hn+1 _ Zj p§n ) 1
(n+1) — (n+1) (n+1) = _(n+1)"
N Z]’pj 8; 51

We assume that 1/s — 0.

The conclusion is that by [JK], 2 is the quasi-uniform limit of the periodic
sequences z(™). Hence it follows that (O(x),S) is a uniquely ergodic (regular)
Toeplitz flow.

Further, by construction U() occurs in £ in positions where it did in (™).
A consequence, by unique ergodicity, is that Gy still realizes G, for each n,
on (O(z*), S, u).

To conclude, we need to know that (U™ = {£*°} in O(z*). This will hold
as soon as |U (")| — 00, because £*° is Toeplitz (usually cylinder basins have
patterns extending to both —oo and +o00): indeed {£*} is the fiber over zero for
the maximal equicontinuous factor of the Toeplitz flow, when constructed as in
[W].

Since this factor is some adding machine, for which forward orbits determine
the point, 2% is completely determined by x*°[0, +o0].

To fit Theorem 2, set A = {0, 1}. |

References

[AG] M. Abadi and A. Galves, Inequalities for the occurrence times of rare events
in mixing processes, The state of art, Markov Processes and Related Fields 7
(2001), 97-112.

[BSTV] H. Bruin, B. Saussol, S. Troubetzkoy and S. Vaienti, Return time statistics
via inducing, Ergodic Theory and Dynamical Systems (2002), to appear.

[C] Z. Coelho, Asymptotic laws for symbolic dynamical systems, Proceedings of
the Conference held in Temuco, 1997, London Mathematical Society Lecture
Note Series 279, Cambridge University Press, 2000, pp. 123-165.

[cC] Z. Coelho and P. Collet, Poisson laws associated to subsystems of finite type
in symbolic dynamical systems, Preprint (2000).

[CF] Z. Coelho and E. de Faria, Limit laws for entrance times for homeomorphisms
of the circle, Israel Journal of Mathematics 69 (1990), 235-249.

[CG] P. Collet and A. Galves, Statistics of close visits to the indifferent fixed point
of an interval map, Journal of Statistical Physics 72 (1993), 459-478.



Vol. 132, 2002 POSSIBLE LIMIT LAWS 263

(DM]
[F]
(H1]

(H2]

[HSV]

K]

F. Durand and A. Maass, Limit laws for entrance times for low complexity
Cantor minimal systems, Nonlinearity 14 (2001), 683-700.

S. Ferenczi, Systems of finite rank, Colloquium Mathematicum 73 (1997),
35-65.

M. Hirata, Poisson law for Axiom A diffeomorphisms, Ergodic Theory and
Dynamical Systems 13 (1993), 533-556.

M. Hirata, Poisson law for the dynamical systems with the “self-mixing”
conditions, in Dynamical Systems and Chaos 1, World Science Publishing,
NJ, 1995, pp. 87-96.

M. Hirata, B. Saussol and S. Vaienti, Statistics of return times: a general
framework and new applications, Communications in Mathematical Physics
206 (1999), 33-55.

K. Jacobs and M. Keane, 0-1 sequences of Toeplitz type, Zeitschrift fiir
Wahrscheinlichkeitstheorie und Verwandte Gebiete 13 (1969), 123-131.

M. Kac, On the notion of recurrence in discrete stochastic processes, Bulletin
of the American Mathematical Society 53 (1947), 1002-1010.

J. C. Oxtoby, Ergodic sets, Bulletin of the American Mathematical Society
58 (1952), 116-136.

B. Pitskel, Poisson limit laws for Markov chains, Ergodic Theory and
Dynamical Systems 11 (1991}, 501-513.

B. Saussol, Etude statistique de systémes dynamiques dilatants, PhD Thesis,
Toulon, France, 1998.

S. Williams, Toeplitz minimal flows which are not uniquely ergodic, Zeitschrift
fiir Wahrscheinlichkeitstheorie und Verwandte Gebiete 67 (1984), 95-107.

L.S. Young, Recurrence times and rates of mixing, Israel Journal of Mathe-
matics 110 (1999), 153-188.



