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A B S T R A C T  

Let G denote  the  set of decreasing G: R --4 R wi th  G - 1 on ] - ~ ,  0], 

and  f o  G(t)dt _~ 1. Let X be  a compac t  metr ic  space,  and  T: X --+ X a 

cont inuous  map.  Let  p denote  a T- invar iant  ergodic probabi l i ty  measu re  

on X,  and  a s s u m e  (X,T,p) to be aperiodic.  Let  U C X be such t ha t  

/z(U) > 0. Let  TU(X) ---- inf{k _~ 1 : Tkx E U}, and  define 

1 
G u ( t )  = --7=., , ( { x  C U :  , (U)w(x )  > t}), t c R. 

t t ( v )  

We prove t ha t  for p-a.e, x E X ,  there  exists  a sequence (Un)n>_l of 

ne ighbourhoods  of x such t ha t  {x} ---- Nn Un, and  for any  G E ~, there  

exists  a subsequence  (nk)k>_l with 

GU~k --4 G weakly. 

We also cons t ruc t  a uniquely  ergodic Toepli tz  flow (O(x~ S, it), t he  

orbit closure of a Toepli tz  sequence  x ~176 such  tha t  the  above conclusion 

still holds, wi th  moreover  the  requ i rement  t ha t  each Un be a cylinder set. 

R e c e i v e d  O c t o b e r  17, 2000 a n d  in  r e v i s e d  f o r m  J a n u a r y  24, 2001 
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1. I n t r o d u c t i o n  

Y. LACROIX Isr. J. Math. 

1.1.  PRELIMINARIES AND NOTATIONS. Throughout, X shall denote a compact 

metric space, T: X --~ X a continuous map, and # shall be a Borel T-invariant 

ergodic probability measure on X. 

Given U C X with #(U) > 0, Poincar~'s recurrence theorem asserts the 

following random variable to be #-a.s. well defined: 

ru(x) = inf{k >_ l: Tkx E U}, x C X .  

Next, Kac's return time theorem [K] reads 

E(p(U)Tu) : E tp(U N {Tu = t}) ---- 1, 
t> l  

where the expectation is computed with respect to the induced probability mea- 

sure on U, Pu := #/#(U). 

A remark is that (X, T, #) is ergodic if and only if Kac's estimation for the 
expectation is valid for any subset having positive measure. 

It is natural to try to understand finer statistical properties of the variable 

#(U)ru  on the space (U, B(X) n U, #u),  for instance the distribution function 

F . ( u ) ~  (t) = ~u({x  : , ( u ) w  ___ t}). 

Another approach, rather rapidly developing in the last decade, is to describe 

asymptotics for entrance times: let x E X and let (Un)n_>l denote a decreasing 

sequence of neighbourhoods for x, with Nn Un = {x}. The question then is 

whether (Fu(un)~-un)n>_l converges weakly or not, and in the case it does, to 

describe the limit. 

The limit has been shown to exist #-a.s. for suitably chosen (Un)~>l and to 

be the distribution function of the positive exponential law with parameter 1, 

in many classes of mixing systems [AG], [BSTV], [C], [CC], [CG], [H1,2], [HSV], 

[P], IS], [Y]. Non-exponential asymptotics have been obtained in [CF] and [DM]. 

This short note is devoted to the two following goals: 

- describe possible Fvs; 

- describe possible asymptotics (a question raised in most papers listed above). 

Essentially, the second relies on the sufficient achievement of the first. Let us 

therefore start by describing Fus. For convenience, we shall put 

Gu = 1 - F u .  
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Clearly, Gu is 

right continuous, 
(iii) simple, 
(iv) has discontinuities at  {tip(U) < . . .  < tkp(U) < . . . } ,  
(v) Gu -- 1 on ] - ec, 0], 

where {tl < t2 < . . . }  = {ru(x) :  x c g} .  Since #(g)ru is a posit ive r a n d o m  

variable, we can compute  its expec ta t ion  by 

/0 (vi) 1 = E( • (U) ru)  = Gu (t)dt, 

which is yet another  t rans la t ion of Kae ' s  theorem.  

1.2. RESULTS. We first par t ia l ly  enough describe Gvs. 
We call (X, T) m i n i m a l  if any T-invar iant  closed subset  F C X is trivial.  

Wi th in  the class of minimal  systems,  recurrence to open subsets U occurs with 

b o u n d e d  g a p s ,  t ha t  is the set {tl < t2 < " "} is finite. 

PROPOSITION 1 : Properties ( i )-(vi)  from the preliminaries, with the requirement 
that the set of discontinuity points { t la < t2o~ < . . .} be finite, are characteristic 
for Gus arising from minimal systems (X, T).  

Let us now introduce a class Q, which will later  serve as the set of weak limits 

of Gus: 

L G = {G: N --+ R, decreasing, - 1 on ] - oc, 0], with a(t)at <_ 1}. 

THEOREM 1: For any  ergodic aperiodic (X, T, p), and #-a.e. x E X,  there exists 

a sequence (Un)nal  o f  neighbourhoods of x, with Nn Un = {x}, such that for 

any G 6 ~, along some subsequence (nk), 

Gunk -+ G weakly, 

whence a11 possible asymptotics exist in any  aperiodic ergodic system. 

The  key tool in proving Theorem 1, which is, as K. Petersen pointed  out to 

the author ,  a Van Strassen type  theorem for asymptot ics ,  is to unders tand  how 

Gvs having rat ional  pa ramete r s  can be const ructed within periodic systems.  

This  result  is of course in contras t  with exponent ia l  asympto t ics  as quoted 

before, bu t  this is due to the fact tha t  the Uns in Theo rem 1 are ex t remely  

weired. 
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It therefore seemed interesting to us to obtain the same result, but within a 

system where the Uns may be chosen to be "real" cylinder sets. This is possible 

indeed, and before stating our last result we will introduce a few more notions. 

U n i q u e  e r g o d i c i t y  of the flow (X, T) means that there is only one T-invariant 

probability measure p; it implies ergodicity. 

Strict e r g o d i c i t y  means both minimality and unique ergodicity. 

Let .4 denote a finite set, an a l p h a b e t .  

A p a t t e r n  U = (u0, . . .  ,un-1)  over .4 is a finite string over .4. 

Its l e n g t h  is IU[ = n. 

Given two patterns U and V, their c o n c a t e n a t i o n  is the obvious pattern, 

denoted UV, of length IUI + IYl. 

Let x E ft+: = .4N or ft: = .4z be a one or two sided sequence over .4. 

On ft + or ~, define S(Xn) = (xn+l), the shif t  transformation. 

The orbit closure of  x, O(x), is the closure of the orbit, O(x) := {Snx}.  

It is shift invariant, (O(x), S) is a topological flow, the flow g e n e r a t e d  by x. 

A Toe p l i t z  flow is the flow generated by a Toeplitz sequence. 

A Toep l i t z  s e q u e n c e  [JK], [O] is an element x E f~ which is non-periodic, 

but satisfies: 

Yn, 3p(n) > 0: Vk, xn = xn+kp(,~). 

A Toeplitz flow is always minimal. 

THEOREM 2: There exists a uniquely ergodic Toeplitz sequence x ~ E {0, 1} z 

such that i f  (X, T, p) denotes the generated shift dynamical system, and if  (Vk) 

denotes the sequence of cylinders intersecting x ~176 for any G E G, there exists a 

subsequence (Un) of (Vk), intersecting x ~ ,  with the property that 

l imGu,  = G, weakly. 
n 

ACKNOWLEDGEMENT: The author thanks A. Fan, B. Saussol and D. Schnei- 

der for kindly listening to preliminary constructions and helping to clarify the 

arguments. 

2. Proof  of  Proposit ion 1 

o===~: This is already done in the Preliminaries sub-section where conditions 

(i)-(vi) are shown to hold for any Gu. 

By minimality the set of recurrence times {tl < t2 < -.-} must be finite. 

e~===: Let us be given a G having finitely many discontinuities located at 

{t l~ < . . .  < tk+l~} for some positive ~. 
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We Let Bj = G ( t j a - )  - G( t ja+) ,  j = 1 , . . . , k +  1. 

We will produce a strictly ergodic y E {0, 1} N such that,  if 0 = ko < kl < .-.  

denotes the set of indices n with Yn = 1, then 

f limN ~ # { i :  ki < N} = a, 
(1) v i ,  - ki �9 { t j } ,  

[ , l img  ~ # { i :  ki < N and ki+l - ki = t j}  = aflj ,  j = 1 , . . . , k  + 1. 

If this can be achieved, then we will put 

X = { S n y : n > O } ,  T = S ,  U - - l ,  

where 1 denotes both the symbol 1 or the cylinder set 1 = {z �9 X: zo = 1}. It is 

then an exercise to check that  G = Gu.  

CONSTRUCTION OF y. We put / j  = [~-~-s<j/~,)--~s<j/~J[ (recall ~-~.j ~j = 1). 

Let T = R / z =  [0, 1[ and select 0 irrational, such that 0 and the ~-'~j<~ 13j's are 

rationally independent. 

Define R z  = z + 0 mod 1, z �9 T. 

The partit ion (Ij)  of T is generating for the minimal uniquely ergodic rotation 

R o n T .  

Apply repeatedly R to produce a sequence (j~) �9 {1 , . . . ,  k + 1} n, defined by 

j,~ = j ~ Rn(o)  �9 I j .  

Then construct y by defining the sequence (ko = 0 < kl < . . . )  first: 

kn ~- Z t j s ,  n >_ O. 
s ( n  

Finally y is obtained by putting " l"s  at positions kn and "0"s elsewhere. | 

3. P r o o f  o f  T h e o r e m  1 

3.1. RATIONAL GS AND RED/GREEN LADDERS. We say a G as in Proposition 

1 is r a t i o n a l  if its parameters, i.e., a,/~j, and t j ,  are rational. 

By Proposition 1, and its proof, such G is a Gu.  

However, in the case of rationality of parameters, we shall show how to produce 

Gu such that G = Gu for some pattern U, and some uniquely ergodic periodic 

system X = {Snx:  0 <_ n < P} (with period P).  

Set, for rational G, a = p /q  and ~j = p j /q .  

As in Proposition 1, we can assume that  tl ~>> 3. 
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Let N -- Mq 2, and set nj = Mppj.  

Consider a perfectly periodic Rohlin tower of height N,  label its levels num- 

bered from 0 to N - 1, and assume at the beginning that  they all have a green 

color. 

Change to red the color of the levels with numbers 

0, tl ,  2tl, �9 �9 �9 (hi -- 1)tl, n l t l ,  nl t l  q- t2, . . . , n l t l  d- n2t2, . . . , E n j t j  + (nk -- 1)tk. 
j<k 

Then let U denote the union of the red levels. It  has density, within the tower, 

equal to a by construction, and red levels are separated by runs of consecutive 

greens having lengths t j  - -  1, hence U returns to itself with times t l , . . . ,  t k .  

Moreover, the density of reds returning to reds by time tj is precisely a/~j 

within the tower, for each j ,  whence G -- Gu. 

We will keep in mind the idea that a rational G with finitely many disconti- 

nuities can be figured by this red/green ladder, a periodic Rohlin tower, with U 

equal to the union of the red levels, bottom marked red. 

We observe that  the set of weak limits of such Gs are the elements of ~. 

3.2.  APERIODICITY AND KAC TOWNS. 

LEMMA 1: The system (X,  T, #) is non-periodic Of and) only i f  for #-a.e. x C X ,  

for any m _> 1, there exists r > 0 such that i f  B(x ,  ~) denotes the open ball 

centered at x and having radius e, then 

B(x, c {r > m}. 

Proof: Assume that  for some m _> 1, if 

Am = {x:  Vc > 0, B(x,  r n {rB(x,e) _< m}}, 

#(Am) > 0. Then pick a subsequence Xq $ 0 together with some n _< m, such 

that  for each q, there exists yq with d(x, yq) < cq ("at' is some distance defining 

the X-topology),  and d(x, Tnyq) < cq. Then get 

0 < d(x, Tnx)  < lim sup d(x, Tnyq) + l imsupd(Tnyq,  Tnx)  = O, 
q q 

because yq --+ x and T n is continuous, whence Am C {x : 3n _< m, x = Tnx} .  

Hence if p (A~)  > 0 for some m, (X, T, #) has a periodic component. 

The "if" part  is left to the reader. | 
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The standard way to prove Kac's theorem within an ergodic system is to take 

some U with p(U) > 0, to consider that  p({rv < +oc}) = 1 by ergodicity, and 

to cut basin U into sets 

u n { w  = k}, k_> l .  

Then above each Un{ru = k} having positive measure starts a skyscraper having 

k floors exactly (bot tom one included), along which the action of T goes up until 

it reaches the top floor where it returns to U some way. 

Hence the whole space X is (mod 0) the union of those skyscrapers with basins 

of the form U n {ru = k} that  cover U. This picture is a K a c  t own .  

Our Lemma I states that  in an aperiodic ergodie system, a.s., Kac towns based 

on e-balls at the point, having arbitrarily large minimal heights, exist. 

3 .3 .  LIGHTING FLOORS ON OR OFF: PROOF OF THEOREM 1. T a k e  a ratio- 

nal G having finitely many discontinuities, as in Proposition 1, and construct a 

red/green ladder or sheave realizing it. 

Choose some e > 0 arbitrary. Consider a Kac town based on some small 

neighbourhood of x �9 X having positive measure, and let m >> 1 be its minimal 

height ({ru >_ m} on U). 

Within each skyscraper in the town, start  piling up red/green ladders starting 

from the bo t tom floor, assuming a ladder step has a floor height. Don ' t  stop 

piling unless the ladder piled exceeds the skyscrapers top floor. 

Then according to whether a ladder's step is red or green, either turn the floor 

light on, or leave it turned off. 

Set W equal to the union of the lightened floors in Kac's  city. 
Then W has measure 

I#(W) - c~ I < #(union of floors above ladders), 

which can be made less than e provided m is chosen large enough. 

Second, {tl . . . .  , tk} c rw(W) ,  and 

~({x �9 w :  ,-w(x) r ( t ,  . . . . .  ta.}}) 

can be made smaller than e provided m is chosen large enough. 

Taking a sequence eq $ 0, this procedure shows that  any weak limit of a 

sequence of rational Gs as in Proposition 1 call be attained as a weak limit of 

Gws  as constructed above. 

Finally, collect rational Gs in a sequence (G,,),,>_o. Let 6',,.,~ = Gw,,.~ be the 

Gw associated to Gn and eq, and collect together within a sequence (U,,),~>0 the 

union of the sequences (Vg~,q) and (B(x, eq)). Then ~ ,  U,, = {x}. | 
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4. P r o o f  o f  T h e o r e m  2 

4.1.  RATIONAL GS: HOLES INSTEAD OF RED/GREEN LADDERS AND PERIODIC 

SEQUENCES. Recall a G as in Proposition 1 is r a t i o n a l  if its parameters, i.e., 

a,/~j, and tj ,  are rational. Such G is a Gu,  by Proposition 1. 

However, in the case of rationality of parameters, we shall show how to produce 

Gu such that G = G u  for some pattern U, and some uniquely ergodic periodic 

system X = {Snx:  0 < n < P} .  

Set, for rational G, a = p/q  and t~j = pj /q .  

As in Proposition 1, we can assume that tl  >> 3. 

Let N = M q  2, and set nj = Mppj .  

As sume  throughout  that V denotes a symbol  not  in .4. 

Select U = ab 2, with a # b in A. 

Then put 
Jj = abt~-3 V a, l <_ j <_ k + l ,  

and set 

J:,J1 ...... �9 �9 ...... ...... J +l = 

nl  times n i times nk+l  times 

(notice that IJI = N ,  IJjl = t j) .  
Finally set x . . . .  J . . .  J . . .  J J  . . . .  J ~ ,  with x[0, IJl[= J (x e (AU {v})Z). 

Then the least period o f x  is IJI, because since tl  < "-. < tk+l, J can occur in 

x only at positions [nlJI, (n + 1)lJl[ for some n > 0. 

The desired frequencies are issued by construction, i.e., G = Gu where U = 

{Z E {Snx:  n >_ 0}: z[0, IUI[= U} (once again, we do not distinguish the pattern 

and the cylinder it defines on the orbit closure). 

4.2. INDUCTION. The set of rational Gs satisfying conditions of Proposition 1 

is countable. 

We can collect them all along a sequence, (G (n))n___0. 

�9 F i r s t  s tep:  Let x (~ be as in sub-section 4.1 for G (~ with notation maintained 

except that we add some superscript ,,(0),. 

�9 S e c o n d  s tep:  G (1) comes with parameters a (1) = p(1)/qO), J~}l) = --p~l)/q(1), 

t~l) < ... < § 
~k(1)+l" 

The idea is to construct x (1) = ( j (1))~ realizing G (1), with j ( n  a concatenation 

of J(~ among which some have had their holes filled in. 

We can assume, reducing a (1) if necessary, and multiplying the (n~ tj  ~ conse- 

quently, that t ~ n =  s~} )N (~ for each j ,  and s~l)>> 3. 
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Let  US put  N (1) ---- M(1)(q(l)) 2, and rt~ 1 ) =  M(1)p(l)p~ 1). 

Each jJo) has a single hole (letter V). 

For  c C .4, and B a pat tern over alphabet A U {V}, let CB be the pattern 
deducedlfrom B by filling in all the holes with a "c". 

Set J J ) = a  j(O)(bj(O))8~)-3j(o)aj(o), then set 

(1) 
j(x) _~ (j~l))n~ ') . . . ( j ~ ! )+x )nko ) , l ,  

which has length N (1). 

Then  using the fact t ha t  s~ 1) < - . .  < A1) and the procedure  followed to fill ~k(1)q-l' 
in some holes, together  with the fact t ha t  j(0) was the min imal  periodic pa t t e rn  

of x (~ we deduce t ha t  x0 )  = (j(1))oo has min imal  per iod N (1) = IJ(1)l. 
Next  set U (1) =a  j(O)bj(O)bj(O). 

Then  G (1) = Gvo) on (O(x(1)),  S). 

Notice t ha t  G (~ remains  equal to Gu(o) on (O(x(1)), S). 

This  is because ab 2 has received no new possible occurrence in the process of 

filling holes t ha t  deduces x (1) f rom x (~ 

a I n d u c t i o n :  Let  n _> 1 (similar to the passage f rom step "0" to "1"). 

We have for superscr ipts  ~ = 0 , . . . , n  const ructed periodic sequences x (e), 

with x (e) = ( j ( e ) )~ ,  [j(e)] = N(e), x(e) with min imal  per iod N (e), we have for 

1 _< g < n const ructed U (e) =a j(e)bj(e)bj(e), and U (~ = abb, such tha t  on 

(O(x(n)) ,S) ,  Gu(e) realizes G (e). Then  G (n+l) comes along with pa ramete r s  
f~(n-bl) ~nq-1) ~(n+l) ~(nq-1) o~(n+l) = p(n+l)/q(n+l), ~'J = p. /q(n+l) < "" �9 < and we ' ~ 1 ~k(n+l) +1 ' 

already assume tha t  -3t(n+l) : 8j(n+l)N(n) with ~JAn+l) >> 3. 
~(n+l)  (n+l) (nT1) (n+l) .].!aWl) Then  set N (n+l) = M(n+l)(q(n+l)) 2, ,ej = M p pj , and -a 

( T(n-bl) hnk(n+z)+l = ,  j (n)(bj(n))~+~)-3j(n)~j( ,~) ,  J(n+l) = (Jl(n+l))n!"+i) . . . .  ~k("+~)+d (~+~) " 

Finally set U (n+l) --~ j (~)bj(n)bj(n) ,  x(n+l) = ( j (n+l) )e% 

(n+l) x(a+l)  By construct ion,  since s~ '~+~) < . - .  < Sk(,+~)+l , we have with lea~st 

per iod N (n+l) = I J  (n+l)l. And the process deducing x (~+1) from x (~) did not add 

any new occurrence of U ( ~  U (n), whence (O(x(~+l)) ,  S) realizes G (n+l) = 

Gu(~+~) ; it does so s imul taneously  for G ( ~  G (~). 

4.3.  CONCLUSION. The  sequence (x(n))n>_O converges pointwise to some x (~) E 
{a, b, V} z . 

Since N (~) = IJ(~)l --~ ec, it follows by construct ion t ha t  in fact x (~) has no 

more  holes, i.e., x (~176 C {a, b} z. 

The  periodic pa t t e rn  g(~) of x (n) has say h ,  holes. Then  the one of x (n+l) has 

hn+l = hn(~j=lk("+~)+l "~J"(n+l)~) . . . .  hnp(n+l )M(n+l ) (~  3 p~n+l)) Else the per iod of 
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X (n+l) is N(n+l  ) = ~-~,j ij;n+l)ln~n+l) = M(n+l)?~(n+l)N(n)(~ _. ~-~j ~J'(n+l)'~(n+l)-J ). 

We deduce that  the density of holes in x (n+l) is 

(n+l) 
h~+ l Ej Pj 1 

N(n+l) = x---, (n+l) (n+l) ~ _(n+l-----~" 
L j  P) Sj ~1 

We assume that  1/s~ ~) --+ O. 

The conclusion is that  by [JK], x ~ is the quasi-uniform limit of the periodic 

sequences x (n). Hence it follows that  (O(x), S) is a uniquely ergodic (regular) 

Toeplitz flow. 

Further, by construction U (n) occurs in x ~ in positions where it did in x (n). 

A consequence, by unique ergodicity, is that  Gv(~) still realizes G (n), for each n, 

o n  (O(x~), S, ~). 
To conclude, we need to know that  [~ U (n) = {x ~ } in O ( x ~ ) .  This will hold 

as soon as ]u(n)I -+ c~, because x ~ is Toeplitz (usually cylinder basins have 

patterns extending to both - c ~  and +(x~): indeed {x ~ } is the fiber over zero for 

the maximal equicontinuous factor of the Toeplitz flow, when constructed as in 

[w]. 
Since this factor is some adding machine, for which forward orbits determine 

the point, x ~ is completely determined by x~[0, +oc[. 

To fit Theorem 2, set A = {0, 1}. II 

[Aa] 

[BSTV] 

[c] 

[cc] 

[cF] 

[ca] 
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